福島第一原発事故による 放射線被ばくと医療被ばくの線量比較

発表者:内村川上内科

診療放射線技師 内田準二

発表日:平成23年11月24日

◎放射線・・・高いエネルギーを持った電磁波や粒子線

◎放射能・・・放射線を出す能力、放射線の強さ

◎放射性物質・・・放射能を持っている物質

◎実効線量・・・人体への影響の度合いを表す線量

- ○放射線・・・高いエネルギーを持った電磁波や粒子線医療: エックス線、アルファ線、ベータ線、ガンマ線、中性子線、電子線など
- ◎放射能・・・放射線を出す能力、放射線の強さ

◎放射性物質・・・放射能を持っている物質

◎実効線量・・・人体への影響の度合いを表す線量

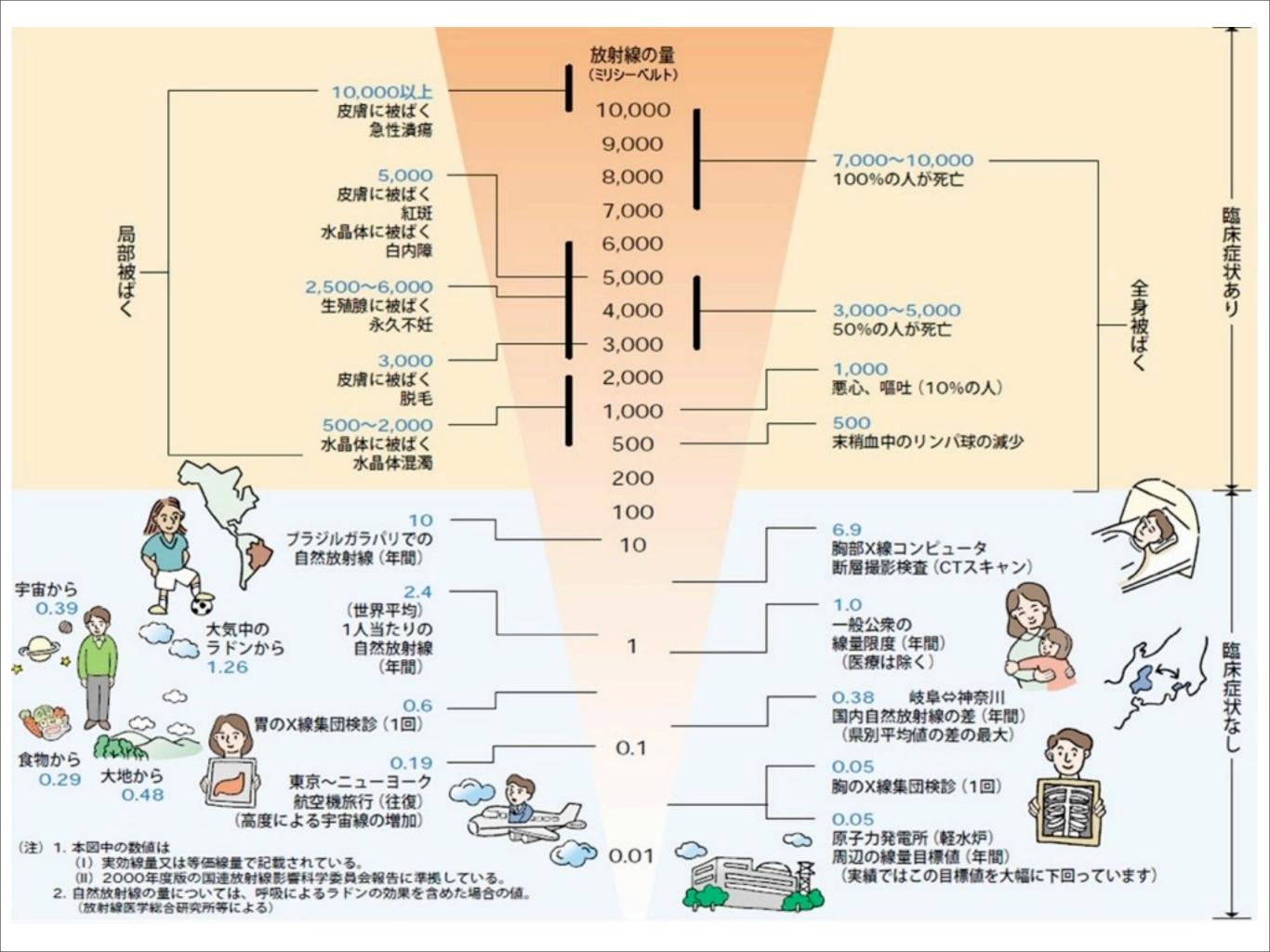
- ○放射線・・・高いエネルギーを持った電磁波や粒子線医療: エックス線、アルファ線、ベータ線、ガンマ線、中性子線、電子線など
- ◎放射能・・・放射線を出す能力,放射線の強さ ^{単位: Bq}
- ◎放射性物質・・・放射能を持っている物質

◎実効線量・・・人体への影響の度合いを表す線量

- ○放射線・・・高いエネルギーを持った電磁波や粒子線医療: エックス線、アルファ線、ベータ線、ガンマ線、中性子線、電子線など
- ○放射能・・・放射線を出す能力,放射線の強さ単位: Bq
- ○放射性物質・・・放射能を持っている物質 ヨウ素、セシウム、ストロンチウム、プルトニウムなど
- ◎実効線量・・・人体への影響の度合いを表す線量

- ○放射線・・・高いエネルギーを持った電磁波や粒子線医療: エックス線、アルファ線、ベータ線、ガンマ線、中性子線、電子線など
- ◎放射能・・・放射線を出す能力,放射線の強さ ^{単位: Bq}
- ○放射性物質・・・放射能を持っている物質 ヨウ素、セシウム、ストロンチウム、プルトニウムなど
- ◎実効線量・・・人体への影響の度合いを表す線量 ^{単位:Sv}

各地の実効線量


	1 時間(μSv)	1 ⊟ (μSv)	1年 (mSv)
仙台市	0.103	2.472	0.902
南相馬市	0.151	3.624	1.323
福島市	0.266	6.384	2.330
港区	0.080	1.920	0.701
名古屋市	0.102	2.448	0.894

http://radiation.yahoo.co.jp/

各検査の実効線量

	1 🗆 (mSv)	
胸部レントゲン	0.05	
腹部レントゲン	1.00	
頭部CT	1.80	
胸部CT	7.80	
腹部CT	7.60	

データ引用:日本放射線公衆安全学会 新潟大学 愛知医科大学

各地の実効線量

	1 時間(μSv)	1 ⊟ (μSv)	1年 (mSv)
仙台市	0.103	2.472	0.902
南相馬市	0.151	3.624	1.323
福島市	0.266	6.384	2.330
港区	0.080	1.920	0.701
名古屋市	0.102	2.448	0.894

http://radiation.yahoo.co.jp/

各検査の実効線量

	1 回 (mSv)	
胸部レントゲン	0.05	
腹部レントゲン	1.00	
頭部CT	1.80	
胸部CT	7.80	
腹部CT	7.60	

200÷365÷24≒0.023 (mSv) 0.023×1000≒23 (μSv)

データ引用:日本放射線公衆安全学会 新潟大学 愛知医科大学